Determining Optimal Mean Arterial Pressure After Cardiac Arrest: A Systematic Review

  
NCJ_cover.jpgBy Kiran J. K. Rikhraj, Michael D. Wood, Ryan L. Hoiland, Sharanjit Thiara, Donald E. G. Griesdale & Mypinder S. Sekhon

First Online: 22 June 2020

Abstract
The use of cerebral autoregulation monitoring to identify patient-specific optimal mean arterial pressure (MAPOPT) has emerged as a technique to augment cerebral oxygen delivery in post-cardiac arrest patients. Our systematic review aims to determine (a) the average MAPOPT in these patients, (b) the feasibility of identifying MAPOPT, (c) the brain tissue oxygenation levels when MAP is within proximity to the MAPOPT and (d) the relationship between neurological outcome and MAPOPT-targeted resuscitation strategies. We carried out this review in accordance with the PRISMA guidelines. We included all studies that used cerebral autoregulation to determine MAPOPT in adult patients (> 16 years old) who achieved return of spontaneous circulation (ROSC) following cardiac arrest. All studies had to include our primary outcome of MAPOPT. We excluded studies where the patients had any history of traumatic brain injury, ischemic stroke or intracranial hemorrhage. We identified six studies with 181 patients. There was wide variability in cerebral autoregulation monitoring methods, length of monitoring, calculation and reporting of MAPOPT. Amongst all studies, the median or mean MAPOPT was consistently above 65 mmHg (range 70–114 mmHg). Definitions of feasibility varied among studies and were difficult to summarize. Only one study noted that brain tissue oxygenation increased as patients’ MAP approached MAPOPT. There was no consistent association between targeting MAPOPT and improved neurological outcome. There is considerable heterogeneity in MAPOPT due to differences in monitoring methods of autoregulation. Further research is needed to assess the clinical utility of MAPOPT-guided strategies on decreasing secondary injury and improving neurological outcomes after ROSC.

Read full article here.

#ReviewArticle​​